CPP多态笔记

多态是C++ 面向对象设计的特征之一。包括运行时多态和编译时多态,在实际工程开发中低耦合,插件化经常涉及。

参考文章:

  1. C++编译期多态与运行期多态 - melonstreet - 博客园 (cnblogs.com)

  2. C++虚函数表剖析 | Leo的博客 (leehao.me)

  3. C++重载重写重定义的区别及多态的概念_u012043391的专栏-CSDN博客_重载重写重定义的区别

重载与重写

  1. 重载overload:在同一个类中,函数名相同,参数列表不同,编译器会根据这些函数的不同参数列表,将同名的函数名称做修饰,从而生成一些不同名称的预处理函数,未体现多态。

  2. 重写override:也叫覆盖,子类重新定义父类中有相同名称相同参数的虚函数,主要是在继承关系中出现的,被重写的函数必须是virtual的,重写函数的访问修饰符可以不同,尽管virtual是private的,子类中重写函数改为public,protected也可以,体现了多态。

  3. 重定义redefining:也叫隐藏,子类重新定义父类中有相同名称的非虚函数,参数列表可以相同可以不同,会覆盖其父类的方法,未体现多态。

多态

“一个接口,多种方法”,程序在运行时才决定调用的函数,C++的多态性是通过虚函数来实现的。

  1. 最常见的用法就是声明基类的指针,利用该指针指向任意一个子类对象,调用相应的虚函数,可以根据指向的子类的不同而实现不同的方法。
  2. 如果没有使用虚函数,则利用基类指针调用相应的函数的时候,将总被限制在基类函数本身,而无法调用到子类中被重写过的函数。

运行时多态

通过虚函数实现。设计思想要归结到类继承体系的设计,对于有相关功能的对象集合,我们总希望能够抽象出它们共有的功能集合,在基类中将这些功能声明为虚接口(虚函数),然后由子类继承基类去重写这些虚接口,以实现子类特有的具体功能。

EX:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Animal
{
public :
virtual void shout() = 0;
};
class Dog :public Animal
{
public:
virtual void shout(){ cout << "汪汪!"<<endl; }
};
class Cat :public Animal
{
public:
virtual void shout(){ cout << "喵喵~"<<endl; }
};
class Bird : public Animal
{
public:
virtual void shout(){ cout << "叽喳!"<<endl; }
};

int main()
{
Animal * anim1 = new Dog;
Animal * anim2 = new Cat;
Animal * anim3 = new Bird;

//藉由指针(或引用)调用的接口,在运行期确定指针(或引用)所指对象的真正类型,调用该类型对应的接口
anim1->shout();
anim2->shout();
anim3->shout();

//delete 对象
...
return 0;
}

说明

运行期多态的实现依赖于虚函数机制。当某个类声明了虚函数时,编译器将为该类对象安插一个虚函数表指针,并为该类设置一张唯一的虚函数表,虚函数表中存放的是该类虚函数地址。运行期间通过虚函数表指针与虚函数表去确定该类虚函数的真正实现。

运行期多态的优势还在于它使处理异质对象集合称为可能

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
//我们有个动物园,里面有一堆动物
int main()
{
vector<Animal*>anims;

Animal * anim1 = new Dog;
Animal * anim2 = new Cat;
Animal * anim3 = new Bird;
Animal * anim4 = new Dog;
Animal * anim5 = new Cat;
Animal * anim6 = new Bird;

//处理异质类集合
anims.push_back(anim1);
anims.push_back(anim2);
anims.push_back(anim3);
anims.push_back(anim4);
anims.push_back(anim5);
anims.push_back(anim6);

for (auto & i : anims)
{
i->shout();
}
//delete对象
//...
return 0;
}

编译时多态

模板参数而言,多态是通过模板具现化和函数重载解析实现的。以不同的模板参数具现化导致调用不同的函数,这就是所谓的编译期多态。

说明

相比较于运行期多态,实现编译期多态的类之间并不需要成为一个继承体系,它们之间可以没有什么关系,但约束是它们都有相同的隐式接口。我们将上面的例子改写为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 
class Animal
{
public :
void shout() { cout << "发出动物的叫声" << endl; };
};
class Dog
{
public:
void shout(){ cout << "汪汪!"<<endl; }
};
class Cat
{
public:
void shout(){ cout << "喵喵~"<<endl; }
};
class Bird
{
public:
void shout(){ cout << "叽喳!"<<endl; }
};
template <typename T>
void animalShout(T & t)
{
t.shout();
}
int main()
{
Animal anim;
Dog dog;
Cat cat;
Bird bird;

animalShout(anim);
animalShout(dog);
animalShout(cat);
animalShout(bird);

getchar();
}

在编译之前,函数模板中t.shout()调用的是哪个接口并不确定。在编译期间,编译器推断出模板参数,因此确定调用的shout是哪个具体类型的接口不同的推断结果调用不同的函数,这就是编译器多态。这类似于重载函数在编译器进行推导,以确定哪一个函数被调用。

分析

运行期多态优点

  1. OO(Object Oriented)设计中重要的特性,对客观世界直觉认识。
  2. 能够处理同一个继承体系下的异质类集合。

运行期多态缺点

  1. 运行期间进行虚函数绑定,提高了程序运行开销。
  2. 庞大的类继承层次,对接口的修改易影响类继承层次。
  3. 由于虚函数在运行期在确定,所以编译器无法对虚函数进行优化
  4. 虚表指针增大了对象体积,类也多了一张虚函数表,当然,这是理所应当值得付出的资源消耗,列为缺点有点勉强。

编译期多态优点

  1. 它带来了泛型编程的概念,使得C++拥有泛型编程与STL这样的强大武器。
  2. 在编译器完成多态,提高运行期效率。
  3. 具有很强的适配性与松耦合性,对于特殊类型可由模板偏特化、全特化来处理。

编译期多态缺点

  1. 程序可读性降低,代码调试带来困难。
  2. 无法实现模板的分离编译,当工程很大时,编译时间不可小觑。
  3. 无法处理异质对象集合。

显式接口与隐式接口

所谓的显式接口是指类继承层次中定义的接口或是某个具体类提供的接口,总而言之,我们能够在源代码中找到这个接口.显式接口以函数签名为中心,例如

1
2
3
4
void AnimalShot(Animal & anim)
{
anim.shout();
}

我们称shout为一个显式接口。在运行期多态中的接口皆为显式接口。

而对模板参数而言,接口是隐式的,奠基于有效表达式。例如:

1
2
3
4
5
template <typename T>
void AnimalShot(T & anim)
{
anim.shout();
}

对于anim来说,必须支持哪一种接口,要由模板参数执行于anim身上的操作来决定

虚函数表

为了实现C++的多态,C++使用了一种动态绑定的技术。这个技术的核心是虚函数表(下文简称虚表)

类的虚表

每个包含了虚函数的类都包含一个虚表。

我们知道,当一个类(A)继承另一个类(B)时,类A会继承类B的函数的调用权。所以如果一个基类包含了虚函数,那么其继承类也可调用这些虚函数,换句话说,一个类继承了包含虚函数的基类,那么这个类也拥有自己的虚表。

我们来看以下的代码。类A包含虚函数vfunc1,vfunc2,由于类A包含虚函数,故类A拥有一个虚表。

1
2
3
4
5
6
7
8
9
class A {
public:
virtual void vfunc1();
virtual void vfunc2();
void func1();
void func2();
private:
int m_data1, m_data2;
};

类A的虚表

图1:类A的虚表示意图

虚表是一个指针数组,其元素是虚函数的指针,每个元素对应一个虚函数的函数指针。需要指出的是,普通的函数即非虚函数,其调用并不需要经过虚表,所以虚表的元素并不包括普通函数的函数指针。
虚表内的条目,即虚函数指针的赋值发生在编译器的编译阶段,也就是说在代码的编译阶段,虚表就可以构造出来了。

虚表指针

  1. 虚表是属于类的,而不是属于某个具体的对象,一个类只需要一个虚表即可。同一个类的所有对象都使用同一个虚表。
  2. 为了指定对象的虚表,对象内部包含一个虚表的指针,来指向自己所使用的虚表。
  3. 为了让每个包含虚表的类的对象都拥有一个虚表指针,编译器在类中添加了一个指针,*__vptr,用来指向虚表
  4. 这样,当类的对象在创建时便拥有了这个指针,且这个指针的值会自动被设置为指向类的虚表

图 2:对象与它的虚表

上面指出,一个继承类的基类如果包含虚函数,那个这个继承类也有拥有自己的虚表,故这个继承类的对象也包含一个虚表指针,用来指向它的虚表。

动态绑定

C++ 是如何利用虚表和虚表指针来实现动态绑定

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class A {
public:
virtual void vfunc1();
virtual void vfunc2();
void func1();
void func2();
private:
int m_data1, m_data2;
};

class B : public A {
public:
virtual void vfunc1();
void func1();
private:
int m_data3;
};

class C: public B {
public:
virtual void vfunc2();
void func2();
private:
int m_data1, m_data4;
};

类 A 是基类,类 B 继承类 A,类 C 又继承类 B。类 A,类 B,类 C,其对象模型如下图 3 所示。

图 3:类 A,类 B,类 C 的对象模型

由于这三个类都有虚函数(无论纯虚),故编译器为每个类都创建了一个虚表,即类 A 的虚表(A vtbl),类 B 的虚表(B vtbl),类 C 的虚表(C vtbl)。类 A,类 B,类 C 的对象都拥有一个虚表指针,*__vptr,用来指向自己所属类的虚表。

  • 类 A 包括两个虚函数,故 A vtbl 包含两个指针,分别指向A::vfunc1()A::vfunc2()
  • 类 B 继承于类 A,故类 B 可以调用类 A 的函数,但由于类 B 重写了B::vfunc1()函数,故 B vtbl 的两个指针分别指向B::vfunc1()A::vfunc2()
  • 类 C 继承于类 B,故类 C 可以调用类 B 的函数,但由于类 C 重写了C::vfunc2()函数,故 C vtbl 的两个指针分别指向B::vfunc1()(指向继承的最近的一个类的函数)和C::vfunc2()

特点:对象的虚表指针用来指向自己所属类的虚表,虚表中的指针会指向其继承的最近的一个类的虚函数

非虚函数的调用不用经过虚表,故不需要虚表中的指针指向这些函数。

EX:

假设我们定义一个类 B 的对象。由于 bObject是类 B 的一个对象,故bObject包含一个虚表指针,指向类 B 的虚表。

1
2
3
4
int main() 
{
B bObject;
}

现在,我们声明一个类 A 的指针p来指向对象bObject。虽然p是基类的指针只能指向基类的部分,但是虚表指针亦属于基类部分,所以p可以访问到对象bObject的虚表指针。bObject的虚表指针指向类 B 的虚表,所以p可以访问到 B vtbl。如图 3 所示。

1
2
3
4
5
int main() 
{
B bObject;
A *p = & bObject;
}
1
2
3
4
5
6
int main() 
{
B bObject;
A *p = & bObject;
p->vfunc1();
}

我们使用p来调用vfunc1()函数时

程序在执行p->vfunc1()时,会发现p是个指针,且调用的函数是虚函数,接下来便会进行以下的步骤。

  1. 首先,根据虚表指针p->__vptr来访问对象bObject对应的虚表。虽然指针p是基类A*类型,但是*__vptr也是基类的一部分,所以可以通过p->__vptr可以访问到对象对应的虚表。
  2. 然后,在虚表中查找所调用的函数对应的条目。由于虚表在编译阶段就可以构造出来了,所以可以根据所调用的函数定位到虚表中的对应条目。对于 p->vfunc1()的调用,B vtbl 的第一项即是vfunc1对应的条目。
  3. 最后,根据虚表中找到的函数指针,调用函数。从图 3 可以看到,B vtbl 的第一项指向B::vfunc1(),所以 p->vfunc1()实质会调用B::vfunc1() 函数。

如果p指向类 A 的对象

1
2
3
4
5
6
int main() 
{
A aObject;
A *p = &aObject;
p->vfunc1();
}

aObject在创建时,它的虚表指针__vptr已设置为指向 A vtbl,这样p->__vptr就指向 A vtbl。vfunc1在 A vtbl 对应在条目指向了A::vfunc1()函数,所以 p->vfunc1()实质会调用A::vfunc1()函数。

可以把以上三个调用函数的步骤用以下表达式来表示:

1
(*(p->__vptr)[n])(p)

可以看到,通过使用这些虚函数表,即使使用的是基类的指针来调用函数,也可以达到正确调用运行中实际对象的虚函数。

我们把经过虚表调用虚函数的过程称为动态绑定,其表现出来的现象称为运行时多态。动态绑定区别于传统的函数调用,传统的函数调用我们称之为静态绑定,即函数的调用在编译阶段就可以确定下来了。

那么,什么时候会执行函数的动态绑定?这需要符合以下三个条件。

  • 通过指针来调用函数
  • 指针 upcast 向上转型(继承类向基类的转换称为 upcast,关于什么是 upcast,可以参考本文的参考资料)
  • 调用的是虚函数

如果一个函数调用符合以上三个条件,编译器就会把该函数调用编译成动态绑定,其函数的调用过程走的是上述通过虚表的机制。

  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2020-2023 cyg
  • 访问人数: | 浏览次数: